Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.227
Filtrar
1.
Biochem Biophys Res Commun ; 598: 74-80, 2022 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-35151207

RESUMO

The histone methyltransferase SET domain bifurcated 1 (SETDB1) catalyzes the trimethylation of lysine 9 of histone H3, thereby regulating gene expression. In this study, we used conditional knockout mice, where Setdb1 was deleted only in neural crest cells (Setdb1fl/fl,Wnt1-Cre + mice), to clarify the role of SETDB1 in palatal development. Setdb1fl/fl,Wnt1-Cre + mice died shortly after birth due to a cleft palate with full penetration. Reduced palatal mesenchyme proliferation was seen in Setdb1fl/fl,Wnt1-Cre + mice, which might be a possible mechanism of cleft palate development. Quantitative RT-PCR and in situ hybridization showed that expression of the Pax9, Bmp4, Bmpr1a, Wnt5a, and Fgf10 genes, known to be important for palatal development, were markedly decreased in the palatal mesenchyme of Setdb1fl/fl,Wnt1-Cre + mice. Along with these phenomena, SMAD1/5/9 phosphorylation was decreased by the loss of Setdb1. Our results demonstrated that SETDB1 is indispensable for palatal development partially through its proliferative effect. Taken together with previous reports that PAX9 regulates BMP signaling during palatal development which implies that loss of Setdb1 may be involved in the cleft palate development by decreasing SMAD-dependent BMP signaling through Pax9.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Histona-Lisina N-Metiltransferase/fisiologia , Palato/embriologia , Animais , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Proliferação de Células/genética , Fissura Palatina/genética , Histona-Lisina N-Metiltransferase/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Crista Neural/fisiopatologia , Fator de Transcrição PAX9/genética , Fator de Transcrição PAX9/metabolismo , Palato/anormalidades , Palato/patologia , Proteínas Smad/genética , Proteínas Smad/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
2.
FASEB J ; 36(2): e22123, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34972242

RESUMO

GABA is a major neurotransmitter in the mammalian central nervous system. Glutamate decarboxylase (GAD) synthesizes GABA from glutamate, and two isoforms of GAD, GAD65, and GAD67, are separately encoded by the Gad2 and Gad1 genes, respectively. The phenotypes differ in severity between GAD single isoform-deficient mice and rats. For example, GAD67 deficiency causes cleft palate and/or omphalocele in mice but not in rats. In this study, to further investigate the functional roles of GAD65 and/or GAD67 and to determine the contribution of these isoforms to GABA synthesis during development, we generated various kinds of GAD isoform(s)-deficient rats and characterized their phenotypes. The age of death was different among Gad mutant rat genotypes. In particular, all Gad1-/- ; Gad2-/- rats died at postnatal day 0 and showed little alveolar space in their lungs, suggesting that the cause of their death was respiratory failure. All Gad1-/- ; Gad2-/- rats and 18% of Gad1-/- ; Gad2+/- rats showed cleft palate. In contrast, none of the Gad mutant rats including Gad1-/- ; Gad2-/- rats, showed omphalocele. These results suggest that both rat GAD65 and GAD67 are involved in palate formation, while neither isoform is critical for abdominal wall formation. The GABA content in Gad1-/- ; Gad2-/- rat forebrains and retinas at embryonic day 20 was extremely low, indicating that almost all GABA was synthesized from glutamate by GADs in the perinatal period. The present study shows that Gad mutant rats are a good model for further defining the role of GABA during development.


Assuntos
Glutamato Descarboxilase/deficiência , Palato/embriologia , Prosencéfalo/embriologia , Retina/embriologia , Animais , Glutamato Descarboxilase/metabolismo , Ratos , Ratos Mutantes
3.
Genesis ; 59(9): e23441, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34390177

RESUMO

Cleft palate is a good model to pushing us toward a deeper understanding of the molecular mechanisms of spatiotemporal patterns in tissues and organisms because of the multiple-step processes such as elevation and fusion. Previous studies have shown that the epithelial ß-catenin is crucial for palatal fusion, however, the function of the mesenchymal ß-catenin remains elusive. We investigate the role of mesenchymal ß-catenin in palatal development by generating a ß-catenin conditional knockout mouse (CKO) (Sox9CreER; Ctnnb1F/F ). We found that the CKO mice exhibited delayed palatal elevation, leading to cleft palate in both in vivo and ex vivo. Abnormal cell proliferation and repressed mesenchymal canonical Wnt signaling were found in the CKO palate. Interestingly, Filamentous actin (F-actin) polymerization was significantly reduced in the palatal mesenchyme of mutant embryos. Furthermore, overexpression of adenovirus-mediated transfection with Acta1 in the mutant could help to elevate the palatal shelves but could not prevent cleft palate in ex vivo. Our results suggest that conditionally knock out ß-catenin in the palatal mesenchyme by Sox9CreER leading to delayed palatal elevation, which results in repressed mesenchymal canonical Wnt signaling, decreased cell proliferation, and reduced actin polymerization, finally causes cleft palate.


Assuntos
Fissura Palatina/genética , Via de Sinalização Wnt , beta Catenina/genética , Actinas/metabolismo , Animais , Células Cultivadas , Deleção de Genes , Integrases/genética , Integrases/metabolismo , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Palato/embriologia , Palato/metabolismo , Multimerização Proteica , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Transgenes , beta Catenina/metabolismo
4.
Dev Dyn ; 250(10): 1463-1476, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33715275

RESUMO

BACKGROUND: Orofacial clefts (OFCs) are common birth defects with complex etiology. Genome wide association studies for OFC have identified SNPs in and near MAFB. MAFB is a transcription factor critical for structural development of digits, kidneys, skin, and brain. MAFB is also expressed in the craniofacial region. Previous sequencing of MAFB in a Filipino population revealed a novel missense variant significantly associated with an increased risk for OFC. This MAFB variant, leading to the amino acid change H131Q, was knocked into the mouse Mafb, resulting in the MafbH131Q allele. The MafbH131Q construct was engineered to allow for deletion of Mafb ("Mafbdel "). RESULTS: Mafbdel/del animals died shortly after birth. Conversely, MafbH131Q/H131Q mice survived into adulthood at Mendelian ratios. Mafbdel/del and MafbH131Q/H131Q heads exhibited normal macroscopic and histological appearance at all embryonic time points evaluated. The periderm was intact based on expression of keratin 6, p63, and E-cadherin. Despite no effect on craniofacial morphogenesis, H131Q inhibited the Mafb-dependent promoter activation of Arhgap29 in palatal mesenchymal, but not ectodermal-derived epithelial cells in a luciferase assay. CONCLUSIONS: Mafb is dispensable for murine palatogenesis in vivo, and the cleft-associated variant H131Q, despite its lack of morphogenic effect, altered the expression of Arhgap29 in a cell-dependent context.


Assuntos
Fissura Palatina/metabolismo , Fator de Transcrição MafB/metabolismo , Palato/metabolismo , Polimorfismo de Nucleotídeo Único , Alelos , Animais , Fissura Palatina/genética , Predisposição Genética para Doença , Fator de Transcrição MafB/genética , Camundongos , Camundongos Transgênicos , Palato/embriologia
5.
PLoS One ; 16(2): e0246989, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33577554

RESUMO

Topiramate is an anti-epileptic drug that is commonly prescribed not just to prevent seizures but also migraine headaches, with over 8 million prescriptions dispensed annually. Topiramate use during pregnancy has been linked to significantly increased risk of babies born with orofacial clefts (OFCs). However, the exact molecular mechanism of topiramate teratogenicity is unknown. In this study, we first used an unbiased antibody array analysis to test the effect of topiramate on human embryonic palatal mesenchyme (HEPM) cells. This analysis identified 40 differentially expressed proteins, showing strong connectivity to known genes associated with orofacial clefts. However, among known OFC genes, only TGFß1 was significantly upregulated in the antibody array analysis. Next, we validated that topiramate could increase expression of TGFß1 and of downstream target phospho-SMAD2 in primary mouse embryonic palatal mesenchyme (MEPM) cells. Furthermore, we showed that topiramate treatment of primary MEPM cells increased expression of SOX9. SOX9 overexpression in chondrocytes is known to cause cleft palate in mouse. We propose that topiramate mediates upregulation of TGFß1 signaling through activation of γ-aminobutyric acid (GABA) receptors in the palate. TGFß1 and SOX9 play critical roles in orofacial morphogenesis, and their abnormal overexpression provides a plausible etiologic molecular mechanism for the teratogenic effects of topiramate.


Assuntos
Anticonvulsivantes/farmacologia , Palato/embriologia , Fatores de Transcrição SOX9/genética , Teratógenos/farmacologia , Topiramato/farmacologia , Fator de Crescimento Transformador beta1/genética , Animais , Linhagem Celular , Células Cultivadas , Fenda Labial/induzido quimicamente , Fenda Labial/genética , Fissura Palatina/induzido quimicamente , Fissura Palatina/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Camundongos , Palato/citologia , Palato/efeitos dos fármacos , Palato/metabolismo , Regulação para Cima/efeitos dos fármacos
6.
Sci Rep ; 11(1): 1452, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446878

RESUMO

Cleft lip and/or palate (CL/P) are common anomalies occurring in 1/800 live-births. Pathogenic SPECC1L variants have been identified in patients with CL/P, which signifies a primary role for SPECC1L in craniofacial development. Specc1l mutant mouse embryos exhibit delayed palatal shelf elevation accompanied by epithelial defects. We now posit that the process of palate elevation is itself abnormal in Specc1l mutants, due to defective remodeling of palatal mesenchyme. To characterize the underlying cellular defect, we studied the movement of primary mouse embryonic palatal mesenchyme (MEPM) cells using live-imaging of wound-repair assays. SPECC1L-deficient MEPM cells exhibited delayed wound-repair, however, reduced cell speed only partially accounted for this delay. Interestingly, mutant MEPM cells were also defective in coordinated cell movement. Therefore, we used open-field 2D cultures of wildtype MEPM cells to show that they indeed formed cell streams at high density, which is an important attribute of collective movement. Furthermore, activation of the PI3K-AKT pathway rescued both cell speed and guidance defects in Specc1l mutant MEPM cells. Thus, we show that live-imaging of primary MEPM cells can be used to assess mesenchymal remodeling defects during palatal shelf elevation, and identify a novel role for SPECC1L in collective movement through modulation of PI3K-AKT signaling.


Assuntos
Fenda Labial/embriologia , Fissura Palatina/embriologia , Embrião de Mamíferos/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Palato/embriologia , Fosfoproteínas/deficiência , Animais , Fenda Labial/genética , Fissura Palatina/genética , Camundongos , Camundongos Knockout , Fosfoproteínas/metabolismo
7.
Nutrients ; 13(1)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467180

RESUMO

Craniofacial development requires extremely fine-tuned developmental coordination of multiple specialized tissues. It has been evidenced that a folate deficiency (vitamin B9), or its synthetic form, folic acid (FA), in maternal diet could trigger multiple craniofacial malformations as oral clefts, tongue, or mandible abnormalities. In this study, a folic acid-deficient (FAD) diet was administered to eight-week-old C57/BL/6J female mouse for 2-16 weeks. The head symmetry, palate and nasal region were studied in 24 control and 260 experimental fetuses. Our results showed a significant reduction in the mean number of fetuses per litter according to maternal weeks on FAD diet (p < 0.01). Fetuses were affected by cleft palate (3.8%) as well as other severe congenital abnormalities, for the first time related to maternal FAD diet, as head asymmetries (4.6%), high arched palate (3.5%), nasal septum malformed (7.3%), nasopharynx duct shape (15%), and cilia and epithelium abnormalities (11.2% and 5.8%). Dysmorphologies of the nasal region were the most frequent, appearing at just four weeks following a maternal FAD diet. This is the first time that nasal region development is experimentally related to this vitamin deficiency. In conclusion, our report offers novel discoveries about the importance of maternal folate intake on midface craniofacial development of the embryos. Moreover, the longer the deficit lasts, the more serious the consequent effects appear to be.


Assuntos
Anormalidades Craniofaciais/etiologia , Doenças Fetais/etiologia , Deficiência de Ácido Fólico/complicações , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Complicações na Gravidez , Prenhez , Animais , Anormalidades Craniofaciais/embriologia , Feminino , Camundongos Endogâmicos C57BL , Septo Nasal/anormalidades , Septo Nasal/embriologia , Nasofaringe/anormalidades , Nasofaringe/embriologia , Palato/anormalidades , Palato/embriologia , Gravidez
8.
Toxicol Lett ; 341: 51-58, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33493612

RESUMO

Palatal mesenchymal cell proliferation is essential to the process of palatogenesis, and the proliferation of mouse embryonic palate mesenchymal (MEPM) cells is impacted by both all-trans retinoic acid (atRA) and the TGF-ß/Smad signaling pathway. The long non-coding RNA (lncRNA) MEG3 has been shown to activate TGF-ß/Smad signaling and to thereby regulate cell proliferation, differentiation, and related processes. Herein, we found that atRA treatment (100 mg/kg) promoted Meg3 upregulation in MEPM cells, and that such upregulation was linked to the suppression of MEPM cell proliferation in the context of secondary palate fusion on gestational day (GD) 13 and 14. Moreover, the demethylation of specific CpG sites within the lncRNA Meg3 promoter was detected in atRA-treated MEPM cells, likely explaining the observed upregulation of this lncRNA. Smad signaling was also suppressed by atRA treatment in these cells, and RNA immunoprecipitation analyses revealed that Smad2 can directly interact with Meg3 in MEPM cells following atRA treatment. Therefore, we propose a model wherein Meg3 is involved in the suppression of MEPM cell proliferation, functioning at least in part via interacting with the Smad2 protein and thereby suppressing Smad signaling in the context of atRA-induced cleft palate.


Assuntos
Fissura Palatina/induzido quimicamente , RNA Longo não Codificante/metabolismo , Proteínas Smad/metabolismo , Tretinoína/efeitos adversos , Animais , Fissura Palatina/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Ceratolíticos/toxicidade , Camundongos , Palato/efeitos dos fármacos , Palato/embriologia , Palato/patologia , Gravidez , RNA Longo não Codificante/genética , Proteínas Smad/genética
9.
Anat Rec (Hoboken) ; 304(2): 247-257, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-31872940

RESUMO

In embryonic amniotes, patterning of the oral and nasal cavities requires bilateral fusion between craniofacial prominences, ensuring an intact primary palate and upper jaw. After fusion has taken place, the embryonic nasal cavities open anteriorly through paired external nares positioned directly above the fusion zones and bordered by the medial nasal and lateral nasal prominences. In this study, we show that in the chicken embryo, the external nares initially form as patent openings but only remain so for a short period of time. Soon after the nasal cavities form, the medial nasal and lateral nasal prominences fuse together in stage 29 embryos, entirely closing off the external nares for a substantial portion of embryonic and fetal development. The epithelium between the fused prominences is then retained and eventually develops into a nasal plug that obstructs the nasal vestibule through the majority of the fetal period. At stage 40, the nasal plug begins to break down through a combination of cellular remodeling, apoptosis, as well as non-apoptotic necrosis, leading to completely patent nasal cavities at hatching. These findings place chickens in a category with several species of nonavian reptiles and mammals (including humans) that have been found to develop a transient embryonic nasal plug. Our findings are discussed in the context of previously reported cases of nasal plugs as part of normal embryonic development and provide novel insight into the craniofacial development of a key model organism in developmental biology.


Assuntos
Apoptose/fisiologia , Desenvolvimento Embrionário/fisiologia , Cavidade Nasal/embriologia , Animais , Embrião de Galinha , Maxila/embriologia , Cavidade Nasal/diagnóstico por imagem , Palato/embriologia , Microtomografia por Raio-X
10.
Dev Dyn ; 250(4): 562-573, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33034111

RESUMO

BACKGROUND: Previous studies showed that mice lacking Fgf18 function had cleft palate defects and that the FGF18 locus was associated with cleft lip and palate in humans, but what specific roles Fgf18 plays during palatogenesis are unclear. RESULTS: We show that Fgf18 exhibits regionally restricted expression in developing palatal shelves, mandible, and tongue, during palatal outgrowth and fusion in mouse embryos. Tissue-specific inactivation of Fgf18 throughout neural crest-derived craniofacial mesenchyme caused shortened mandible and reduction in ossification of the frontal, nasal, and anterior cranial base skeletal elements in Fgf18c/c ;Wnt1-Cre mutant mice. About 64% of Fgf18c/c ;Wnt1-Cre mice exhibited cleft palate. Whereas palatal shelf elevation was impaired in many Fgf18c/c ;Wnt1-Cre embryos, no significant difference in palatal cell proliferation was detected between Fgf18c/c ;Wnt1-Cre embryos and their control littermates. Embryonic maxillary explants from Fgf18c/c ;Wnt1-Cre embryos showed successful palatal shelf elevation and fusion in organ culture similar to the maxillary explants from control embryos. Furthermore, tissue-specific inactivation of Fgf18 in the early palatal mesenchyme did not cause cleft palate. CONCLUSION: These results demonstrate a critical role for Fgf18 expression in the neural crest-derived mesenchyme for the development of the mandible and multiple craniofacial bones but Fgf18 expression in the palatal mesenchyme is dispensable for palatogenesis.


Assuntos
Fissura Palatina/etiologia , Fatores de Crescimento de Fibroblastos/fisiologia , Palato/embriologia , Animais , Feminino , Masculino , Mandíbula/embriologia , Mandíbula/metabolismo , Mesoderma/metabolismo , Camundongos Knockout , Micrognatismo/etiologia , Crista Neural/fisiologia , Palato/metabolismo
11.
J Anat ; 238(2): 249-287, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33169847

RESUMO

The vomeronasal organ (VNO), nasal cavity, lacrimal duct, choanal groove, and associated parts of the superficial (soft tissue) palate are called the naso-palatal complex. Despite the morphological diversity of the squamate noses, little is known about the embryological basis of this variation. Moreover, developmental data might be especially interesting in light of the morpho-molecular discordance of squamate phylogeny, since a 'molecular scenario' implies an occurrence of unexpected scale of homoplasy also in olfactory systems. In this study, we used X-ray microtomography and light microscopy to describe morphogenesis of the naso-palatal complex in two gekkotans: Lepidodactylus lugubris (Gekkonidae) and Eublepharis macularius (Eublepharidae). Our embryological data confirmed recent findings about the nature of some developmental processes in squamates, for example, involvement of the lateral nasal prominence in the formation of the choanal groove. Moreover, our study revealed previously unknown differences between the studied gekkotans and allows us to propose redefinition of the anterior concha of Sphenodon. Interpretation of some described conditions might be problematic in the phylogenetic context, since they represent unknown: squamate, nonophidian squamate, or gekkotan features.


Assuntos
Lagartos/embriologia , Osso Nasal/embriologia , Palato/embriologia , Animais , Osso Nasal/diagnóstico por imagem , Palato/diagnóstico por imagem , Microtomografia por Raio-X
12.
J Mol Histol ; 52(1): 45-61, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33159638

RESUMO

As the major receptor mediated BMP signaling in craniofacial development, Bmpr1a expression was detected in the anterior palatal shelves from E13.5 and the posterior palatal shelves from E14.5. However, inactivating BMP receptor in the mesenchyme only leads to anterior cleft palate or submucous cleft palate. The role of BMP signaling in posterior palatal mesenchyme and palatal osteogenesis is still unknown. In this study, a secreted BMP antagonist, Noggin was over-expressed by Osr2-creKI to suppress BMP signaling intensively in mouse palatal mesenchyme, which made the newborn mouse displaying complete cleft palate, a phenotype much severer than the anterior or submucous cleft palate. Immunohistochemical analysis indicated that in the anterior and posterior palatal mesenchyme, the canonical BMP-Smad4 signaling was dramatically down-regulated, while the non-canonical BMP signaling pathways were altered little. Although cell proliferation was reduced only in the anterior palatal mesenchyme, the osteogenic condensation and Osterix distribution were remarkably repressed in the posterior palatal mesenchyme by Noggin over-expression. These findings suggested that BMP-Smad4 signaling was essential for the cell proliferation in the anterior palatal mesenchyme, and for the osteogenesis in the posterior palatal mesenchyme. Interestingly, the constitutive activation of Bmpr1a in palatal mesenchyme also caused the complete cleft palate, in which the enhanced BMP-Smad4 signaling resulted in the premature osteogenic differentiation in palatal mesenchyme. Moreover, neither the Noggin over-expression nor Bmpr1a activation disrupted the elevation of palatal shelves. Our study not only suggested that BMP signaling played the differential roles in the anterior and posterior palatal mesenchyme, but also indicated that BMP-Smad4 signaling was required to be finely tuned for the osteogenesis of palatal mesenchyme.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Fissura Palatina/metabolismo , Mesoderma/patologia , Osteogênese , Palato/patologia , Transdução de Sinais , Proteína Smad4/metabolismo , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Osso e Ossos/patologia , Bromodesoxiuridina/metabolismo , Proteínas de Transporte/metabolismo , Diferenciação Celular , Proliferação de Células , Fissura Palatina/embriologia , Fissura Palatina/patologia , Embrião de Mamíferos/anormalidades , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Integrases/metabolismo , Masculino , Mesoderma/embriologia , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Tamanho do Órgão , Palato/embriologia , Fator de Transcrição Sp7/metabolismo
13.
Exp Cell Res ; 396(2): 112310, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32991875

RESUMO

BACKGROUND: Cleft palate is a common craniofacial defect, which occurs when the palate fails to fuse during development. During fusion, the palatal shelves migrate towards the embryonic midline to form a seam. Apoptotic elimination of medial edge epithelium (MEE) cells along this seam is required for the completion of palate fusion. METHODS: Whole exome sequencing (WES) of six Chinese cleft palate families was applied to identify novel cleft palate-associated gene variants. Palatal fusion and immunofluorescence studies were performed in a murine palatal shelf organ culture model. Gene and protein expression were analyzed by qPCR and immunoblotting in murine MEE cells during seam formation in vivo. Mechanistic immunoprecipitation studies were performed in murine MEE cells in vitro. RESULTS: WES identified Bcl-2 associated anthanogene 6 (BAG6) as a novel cleft palate-associated gene. In murine MEE cells, we discovered upregulation of Bag6 and the transcription factor forkhead box protein O1 (FoxO1) during seam formation in vivo. Using a palatal shelf organ culture model, we demonstrate that nuclear-localized Bag6 enhances MEE cell apoptosis by promoting p300's acetylation of FoxO1, thereby promoting transcription of the pro-apoptotic Fas ligand (FasL). Subsequent gain- and loss-of-function studies in the organ culture model demonstrated that FasL is required for Bag6/acFoxO1-mediated activation of pro-apoptotic Bax/caspase-3 signaling, MEE apoptosis, and palate fusion. Palatal shelf contact was shown to enhance Bag6 nuclear localization and upregulate nuclear acFoxO1 in MEE cells. CONCLUSIONS: These findings demonstrate that nuclear-localized Bag6 and p300 co-operatively enhance FoxO1 acetylation to promote FasL-mediated MEE apoptosis during palate fusion.


Assuntos
Apoptose , Fissura Palatina/genética , Proteína Ligante Fas/metabolismo , Proteína Forkhead Box O1/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Palato/embriologia , Acetilação , Animais , Povo Asiático/genética , Núcleo Celular/metabolismo , Proteína p300 Associada a E1A/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Camundongos Endogâmicos C57BL , Chaperonas Moleculares/genética , Proteínas Nucleares/genética , Ligação Proteica , Transporte Proteico
14.
Toxicol Lett ; 333: 90-96, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32768652

RESUMO

2,3,7,8-Tetrachlorodibenzo- p-dioxin (TCDD) effectively induces cleft palate at increased doses, but its mechanism of involvement is unclear, and arguments have examined palatal shelf contact and/or fusion failure. The role of different types of cells constituting palatal skulls remains elusive regarding TCDD dosage. No reports have simultaneously compared the biological behaviors of TCDD- induced mesenchymal and epithelial cells in vitro. This study employed primary epithelial and mesenchymal cells as models in vitro to explore proliferation, migration, apoptosis and epithelial-to-mesenchymal transition with two different doses of TCDD (10 nmol/L, 100 nmol/L), contrasted with a control group without TCDD. Interestingly, we found the EMT process of primary palatal epithelial cells occurred automatically in vitro without helping bilateral palatal contact. The results showed that, with the low dose of TCDD, transformation of epithelial cells to mesenchymal cells was inhibited, and mesenchymal cell proliferation and migration were promoted. At high doses, mesenchymal cells decreased, preventing palate development, uprising and contact, while the EMT of epithelial cells decreased. Regardless of dose of TCDD, no impact on migration and apoptosis of epithelial cells was noted, but there was increased apoptosis of mesenchymal cell in a dose-dependent manner.


Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Células Epiteliais/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Palato/efeitos dos fármacos , Dibenzodioxinas Policloradas/toxicidade , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Animais , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fissura Palatina/induzido quimicamente , Fissura Palatina/embriologia , Fissura Palatina/patologia , Relação Dose-Resposta a Droga , Células Epiteliais/patologia , Feminino , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Palato/embriologia , Palato/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/patologia
15.
Development ; 147(21)2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32541010

RESUMO

Kabuki syndrome (KS) is a congenital craniofacial disorder resulting from mutations in the KMT2D histone methylase (KS1) or the UTX histone demethylase (KS2). With small cohorts of KS2 patients, it is not clear whether differences exist in clinical manifestations relative to KS1. We mutated KMT2D in neural crest cells (NCCs) to study cellular and molecular functions in craniofacial development with respect to UTX. Similar to UTX, KMT2D NCC knockout mice demonstrate hypoplasia with reductions in frontonasal bone lengths. We have traced the onset of KMT2D and UTX mutant NCC frontal dysfunction to a stage of altered osteochondral progenitor differentiation. KMT2D NCC loss-of-function does exhibit unique phenotypes distinct from UTX mutation, including fully penetrant cleft palate, mandible hypoplasia and deficits in cranial base ossification. KMT2D mutant NCCs lead to defective secondary palatal shelf elevation with reduced expression of extracellular matrix components. KMT2D mutant chondrocytes in the cranial base fail to properly differentiate, leading to defective endochondral ossification. We conclude that KMT2D is required for appropriate cranial NCC differentiation and KMT2D-specific phenotypes may underlie differences between Kabuki syndrome subtypes.


Assuntos
Anormalidades Múltiplas/enzimologia , Anormalidades Múltiplas/patologia , Diferenciação Celular , Face/anormalidades , Doenças Hematológicas/enzimologia , Doenças Hematológicas/patologia , Histona-Lisina N-Metiltransferase/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Crista Neural/enzimologia , Crista Neural/patologia , Doenças Vestibulares/enzimologia , Doenças Vestibulares/patologia , Alelos , Animais , Linhagem da Célula , Movimento Celular , Condrócitos/patologia , Face/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfogênese , Mutação/genética , Osteogênese , Palato/embriologia , Palato/metabolismo , Palato/patologia , Fenótipo , Crânio/patologia
16.
Environ Toxicol Pharmacol ; 80: 103438, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32569741

RESUMO

Cleft palate is a common congenital maxillofacial malformation in newborns. All-trans retinoic acid (atRA) is an ideal exogenous stimulus to construct a mouse cleft palate model. However, the precise pathogenic mechanism remains to be elucidated. In our study, to explore the toxicity of atRA on palatal shelves during different stages of palate development, a total of 100 mg/kg atRA was administered to C57BL/6 mice at embryonic day 10.5 (E10.5). Mouse embryonic palatal shelves at E13.5, E14.5, E15.5, and E16.5 were collected for RNA extraction and histological treatment. Changes in gene expression were tested through RNA-seq. Selected differentially expressed genes (DEGs) related to metabolic pathways, such as Ptgds, Ttr, Cyp2g1, Ugt2a1 and Mgst3, were validated and analyzed by Quantitative real-time PCR (qRT-PCR). In addition, Gene Oncology analysis showed that transcriptional changes of genes from extracellular matrix (ECM) components, such as Spp1, and crystallin family might play important role in palatal shelves elevation (E13.5-E14.5). Therefore, the protein expression level of Ttr and Spp1 from E13.5 to E16.5 were tested by immunohistochemistry (IHC). Besides, the mRNA level of Spp1, were down-regulated at E16.5 and the protein were down-regulated at E15.5 and E16.5 in all-trans retinoic acid group, suggesting that atRA may involve in palatal bone formation by regulating Spp1. Overall, gene transcriptional profiles were obviously different at each time point of palate development. Thus, this study summarized some pathways and genes that may be related to palatogenesis and cleft palate through RNA-seq, to provide a direction for subsequent studies on the mechanism and targeted therapy of cleft palate.


Assuntos
Fissura Palatina/induzido quimicamente , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Palato/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Transcriptoma/efeitos dos fármacos , Tretinoína/toxicidade , Animais , Fissura Palatina/genética , Feminino , Ontologia Genética , Idade Gestacional , Camundongos , Camundongos Endogâmicos C57BL , Palato/embriologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , RNA/genética , RNA-Seq , Reação em Cadeia da Polimerase em Tempo Real
17.
Development ; 147(21)2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32554531

RESUMO

Cleft palate (CP), one of the most common congenital conditions, arises from failures in secondary palatogenesis during embryonic development. Several human genetic syndromes featuring CP and ectodermal dysplasia have been linked to mutations in genes regulating cell-cell adhesion, yet mouse models have largely failed to recapitulate these findings. Here, we use in utero lentiviral-mediated genetic approaches in mice to provide the first direct evidence that the nectin-afadin axis is essential for proper palate shelf elevation and fusion. Using this technique, we demonstrate that palatal epithelial conditional loss of afadin (Afdn) - an obligate nectin- and actin-binding protein - induces a high penetrance of CP, not observed when Afdn is targeted later using Krt14-Cre We implicate Nectin1 and Nectin4 as being crucially involved, as loss of either induces a low penetrance of mild palate closure defects, while loss of both causes severe CP with a frequency similar to Afdn loss. Finally, expression of the human disease mutant NECTIN1W185X causes CP with greater penetrance than Nectin1 loss, suggesting this alteration may drive CP via a dominant interfering mechanism.


Assuntos
Fenda Labial/genética , Fissura Palatina/genética , Proteínas dos Microfilamentos/genética , Mutação/genética , Nectinas/genética , Animais , Células Epiteliais/metabolismo , Humanos , Integrases/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Organogênese , Palato/embriologia , Penetrância , Síndrome
18.
Dev Dyn ; 249(10): 1274-1284, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32390226

RESUMO

BACKGROUND: Despite the strides made in understanding the complex network of key regulatory genes and cellular processes that drive palate morphogenesis, patients suffering from these conditions face treatment options that are limited to complex surgeries and multidisciplinary care throughout life. Hence, a better understanding of how molecular interactions drive palatal growth and fusion is critical for the development of treatment and preventive strategies for cleft palates in humans. Our previous work demonstrated that Pax9-dependent Wnt signaling is critical for the growth and fusion of palatal shelves. We showed that controlled intravenous delivery of small molecule Wnt agonists specifically blocks the action of Dkks (inhibitors of Wnt signaling) and corrects secondary palatal clefts in Pax9-/- mice. While these data underscore the importance of the functional upstream relationship of Pax9 to the Wnt pathway, not much is known about how the genetic nature of Pax9's interactions in vivo and how it modulates the actions of these downstream effectors during palate formation. RESULTS: Here, we show that the genetic reduction of Dkk1 during palatogenesis corrected secondary palatal clefts in Pax9-/- mice with restoration of Wnt signaling activities. In contrast, genetically induced overexpression of Dkk1 mice phenocopied the defects in tooth and palate development visible in Pax9-/- strains. Results of ChIP-qPCR assays showed that Pax9 can bind to regions near the transcription start sites of Dkk1 and Dkk2 as well as the intergenic region of Wnt9b and Wnt3 ligands that are downregulated in Pax9-/- palates. CONCLUSIONS: Taken together, these data suggest that the molecular mechanisms underlying Pax9's role in modulating Wnt signaling activity likely involve the inhibition of Dkk expression and the control of Wnt ligands during palatogenesis.


Assuntos
Fator de Transcrição PAX9/genética , Fator de Transcrição PAX9/fisiologia , Palato/embriologia , Proteínas Wnt/genética , Animais , Fissura Palatina/genética , Modelos Animais de Doenças , Feminino , Genótipo , Ligantes , Masculino , Mesoderma , Camundongos , Mutação , Palato/fisiologia , Fenótipo , Transdução de Sinais , Proteínas Wnt/metabolismo , Proteína Wnt3/genética
19.
Development ; 147(21)2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32253237

RESUMO

Cleft lip is one of the most common human birth defects. However, there remain a limited number of mouse models of cleft lip that can be leveraged to characterize the genes and mechanisms that cause this disorder. Crosstalk between epithelial and mesenchymal cells underlies formation of the face and palate, but the basic molecular events mediating this crosstalk remain poorly understood. We previously demonstrated that mice lacking the epithelial-specific splicing factor Esrp1 have fully penetrant bilateral cleft lip and palate. In this study, we further investigated the mechanisms leading to cleft lip as well as cleft palate in both existing and new Esrp1 mutant mouse models. These studies included a detailed transcriptomic analysis of changes in ectoderm and mesenchyme in Esrp1-/- embryos during face formation. We identified altered expression of genes previously implicated in cleft lip and/or palate, including components of multiple signaling pathways. These findings provide the foundation for detailed investigations using Esrp1 mutant disease models to examine gene regulatory networks and pathways that are essential for normal face and palate development - the disruption of which leads to orofacial clefting in human patients.


Assuntos
Fenda Labial/patologia , Fissura Palatina/patologia , Epitélio/patologia , Mesoderma/patologia , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Processamento Alternativo/genética , Animais , Proliferação de Células , Fenda Labial/embriologia , Fenda Labial/genética , Fissura Palatina/embriologia , Fissura Palatina/genética , Ectoderma/embriologia , Ectoderma/metabolismo , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Epitélio/embriologia , Face , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Mesoderma/embriologia , Camundongos Knockout , Organogênese/genética , Palato/embriologia , Palato/patologia
20.
J Biol Chem ; 295(16): 5449-5460, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32169905

RESUMO

Haploinsufficiency of Meis homeobox 2 (MEIS2), encoding a transcriptional regulator, is associated with human cleft palate, and Meis2 inactivation leads to abnormal palate development in mice, implicating MEIS2 functions in palate development. However, its functional mechanisms remain unknown. Here we observed widespread MEIS2 expression in the developing palate in mice. Wnt1Cre -mediated Meis2 inactivation in cranial neural crest cells led to a secondary palate cleft. Importantly, about half of the Wnt1Cre ;Meis2f/f mice exhibited a submucous cleft, providing a model for studying palatal bone formation and patterning. Consistent with complete absence of palatal bones, the results from integrative analyses of MEIS2 by ChIP sequencing, RNA-Seq, and an assay for transposase-accessible chromatin sequencing identified key osteogenic genes regulated directly by MEIS2, indicating that it plays a fundamental role in palatal osteogenesis. De novo motif analysis uncovered that the MEIS2-bound regions are highly enriched in binding motifs for several key osteogenic transcription factors, particularly short stature homeobox 2 (SHOX2). Comparative ChIP sequencing analyses revealed genome-wide co-occupancy of MEIS2 and SHOX2 in addition to their colocalization in the developing palate and physical interaction, suggesting that SHOX2 and MEIS2 functionally interact. However, although SHOX2 was required for proper palatal bone formation and was a direct downstream target of MEIS2, Shox2 overexpression failed to rescue the palatal bone defects in a Meis2-mutant background. These results, together with the fact that Meis2 expression is associated with high osteogenic potential and required for chromatin accessibility of osteogenic genes, support a vital function of MEIS2 in setting up a ground state for palatal osteogenesis.


Assuntos
Proteínas de Homeodomínio/metabolismo , Osteogênese , Palato/metabolismo , Animais , Sítios de Ligação , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Endogâmicos C57BL , Crista Neural/citologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Palato/embriologia , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...